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Thermal Conductivity, Electrical Resistivity, and Thermopower

of Aerospace Alloys from 4 to 300K
J. G. Hust, Robert L.. Powell, and D. H. Weitzel
Abstract

An apparatus for the measurement of thermal conductivity, elec-
trical resistivity, and thermopower from 4 to 300K is described. This
apparatus, a modified version of the one used earlier in this laboratory,
utilizes the steady-state, axial heat flow method. The specimens are
cylindrical rods about 23cm long and 0.1 to 1.0cm” in cross-sectional
arca. Included is a detailed discussion of the limitations of the appa-
ratus, probable errors, and data analysis methods. Tables and figures
of thermal conductivity, electrical resistivity, Lorenz ratio, and ab-
solute thermopowers are presented for titanium alloy A 110-AT, alumi-
num alloy 7039, Inconeli 718, Hastelloy X, reactor grade beryllium, and
PO- 3 graphite. Extensive raw experimental and computer processed
data are also included here to serve as a permanent record. The un-
certainty of the property data presented is estimated at 1-29, for ther-
mal conductivity, 0.27% for electrical resistivity, and 0.05u V/K for
thermopowe. .

Key Words
Aluminum alloy, beryllium, cryogenics, electrical resistivity, graphite,
[Loren. ratio, nickel alloys, Secebeck effect, thermal conductivity, titan-

ium alloy, and transport properties.

" This work was carried out at the National Bureau of Standards under
the sponsorship of the NASA-Space Nuclear Propulsion Office, Cleveland.



THERMAL CONDUCTIVITY, ELECTRICAL RESISTIVITY, AND
THERMOPOWER OF AEROSPACE ALLOYS FROM 4 to 300K

J. G. Hust, Robert L.. Powell and D. H. Weitzel

I INTRODUCTION

The development of new materials and renewed interest in exis-
ing materials by the aerospace industry is creating a demand for ther-
mal and electrical property measurements on these materials. Such
data are needed for the selection of suitable construction materials
and the prediction of operating characteristics of low temperature sys-
tems. To help satisfy the immediate needs for these data an appara-
tus has been built to measure the thermal conductivity, electrical re-
sistivity, and thermopowver of solids. This apparatus is designed to
measure samples with thermal conductivities varying frorn 0.1 to
5,000 W/ mK at temperatures from 4 to 300K. In addition to the meas-
urements reported here on aerospace alloys, measurements will also
be made on several standard reference materials. The availability of
reference standards will help to further alleviate the dearth of ther-
mal conductivity data by encouraging the construction of new appara-
tus, especially the more rapid measuring systems based on the com-
parative method. These reference materials can also be used to check
out new absolute apparatus.

Thermal conductivity data of technically important solids accu-
rate to 5% satisfy current demands. However, future demands will
likely be more stringent. Standard reference material data should be
accurate to better than 1%. For these reasons this program is di-
rected toward the acquisition of thermal conductivity data which are

accurate to within 1%. Thermal conductivity data accurate to within




17, are wndeed difficult to determine, especially for poor conductors
and temperatures above about 120K, because of the difficulty of main-
taining thermal losses at a sufficiently low level.

The present apparatus is patterned after that described by
Powell, et all.l] Because of some important modifications and im-
proved instrumentation a brief description is presented here. This
paper contains results of measurements on titanium A-110 AT, In-
conel 718;:: Hastelloy X::: aluminum 7039, a reactor grade beryllium

and }’()-3ﬂgraphitc. Also included are data analysis methods and an

error analysis of this system.

2.  EXPERIMENTAL APPARATUS

Of the many methods described in the literature for the meas-
urement of th_rmal conductivity, probably the simplest both con-
ceptually and mechanically is the axial heat flow method. In this con-
figuration the specimen is in the form of a rod with constant cross-
scctional arca and the heat flow is along the axis of the rod. This con-
figuration 1s also convenient for the simultaneous measurement of the
clectrical resistance and the Seebeck voltage. Accurate measure-
ments can be obtained by this method as long as radiation and other
radial losses can be limited to a reasonable value. Above 300 K this
is difficult to do except for good conductors. The temperature range
of interest in this work is below 300 K; thus the axial heat flow method
was chosen to obtain the most accurate data. The apparatus is shown

in figure 1.

The use in this paper of trade names of specific products is
esscntial to a proper understanding of the work presented. Their use
in no way implies any approval,endorsement, or recommendation by

NBS. (Sce |_l()| in references).



The cryostat consists of concentrically mounted specimen,
specimen shield (filled with glass fiber), vacyum can, and glass cryo-
gen dewar. The glass dewar is supported by a stainless steel con-
tainer soldered to the top plate to create a closed system. This sys-
tem is immersed in a nitrogen-filled stainless steel dewar. For tem-
peratures up to about 200 K, the inner glass dewar is filled with liquid
helium, hydrogen, or nitrogen depending on the temperature range de-
sired. The outer dewar is filled with liquid nitrogen to reduce the
boil -off rate of the liquid in the inner dewar. The pressure above the
liquid in the inner dewar is controlled with a manostat to isolate the
bath from atmospheric pressure variations which in turn would create
temperature variations of the bath. To obtain measurements in the
range of 200 to 300 K the outer stainless steel dewar is removed and
the inner dewar is filled with either a dry ice-alcohol bath or an ice
water bath.

The top end of the specimen is clamped to a temperature con-
trolled copper heat sink (floating sink). A heater is attached to the
bottom end of the specimen. The temperature of the specimen is de-
termined at eight equally spaced positions along its length by thermo-
couples fastened tc knife-edged thermocouple holders. Heat losses
from the specimen are minimized by evacuating the specimen cham-
ber, surrounding the specimen with a temperature controlled cylin-
drical shell and filling the space between the specimen and shell with
glass fiber. The upper end of the shell surrounding the specimen is
attached to the floating sink. The shell temperature distribution is
controlled by means of a main heater at the bottom of the shell and
three trim heaters equally spaced along the shell. The temperature
differences between the specimen and shell are determined by differ-

ential thermocouples located at the heater positions.




The floating sink is attached to the lid of the vacuum can by
means of three standoff bolts. An electrical heater is wrapped on
these bolts to allow temperature control of the floating sink and thus
the upper end of the specimen and surrounding shield.

A heavy copper ring (about 10 cm diameter, 1 cm thick and 2.5
cm long) is attached to and in good thermal contact with the lid of the
vacuum chamber. This lid in turn is in direct contact with the tem-
perature controlled cryogenic liquid. The copper ring serves as the
temperature reference for all of the thermocouples in the system.
Mounted in the copper ring is a platinum resistance thermometer to
determine the reference temperature for temperatures above 20 K.

The electrical resistance of the specimen is determined by pas-
sing an electrical current through it and measuring the potential drop
between thermocouple holders number one and eight. Forward and
reverse readings are taken to eliminate the Seebeck voltage from this
measurement. The Seebeck voltage (thermovoltage) is determined
from the difference in forward and reverse readings and is also meas-
ured directly with zero electrical current. The Seebeck voltage is
measured with respect to '"'normal'' Ag wire (Ag-0.37 at.% Au.)

The differences between this apparatus and that described earl-

(1]

ier by Powell, et al” “are: (1) the addition of the floating sink and its
associated control circuitry, (2) two additional trim heaters along the
shell surrounding the specimen, (3) use of glass fiber radiation shield-
ing around the specimen to extend measurements above 120K, (4)
pressure control on the space above the cryogenic liquid, (5) use of
thexmocouples with a higher sensitivity at low temperatures, (6) use

of more advanced electronic control circuitry and measuring appara-

tus.



Lk Specimen Assembly and Thermocouples

The specimen is clamped at its upper and lower ends to
the floating sink and specimen heater respectively. To improve the
thermal contact at these clamps a thermal contact grease is applied.
Better contact has been obtained using an alloy of indium and gallium
(liquid at room temperature). However it was found that this material
reacts with aluminum, for example, and probably diffuses quite rapid-
ly with other samples. Its use was discontinued until more of its
characteristics are understood.

The specimens are 23 cm long cylinders. The cross-
sectional area of each is based on the thermal conductivity of that
specimen. The best conductors have the smallest cross-sectional
area (0.02 cm®) while the poorest conductors have the largest cross-
sectional area (5 cma). The diameters of these specimens is meas-
ured to within * 0.0001 cm at several points along each specimen. The
maximum diameter variation measured for a given specimen is about
+ 0.0003cm from the mean diameter.

The thermocouples are attached to the thermocouple
holders via epoxy cement, a metal cylinder, and a coating of thermal
contact grease. This assembly is shown in figure 2. The knife edge
on each thermocouple holder fits into a machined groove (0.05mm
deep) on the specimen. Thnese grooves are machined at a spacing of
2.540 £ 0.003cm. The actual spacing is determined with a gonio-
metric microscope to * 0.0001 cm.

The temperature measuring and differential thermo-
couples are Chromel vs Au-Fe(Au-0.07at.% Fe). These thermocouples
were fabricated from single rolls of Chromel and Au-Fe wires.
Segments of wire from the beginning and end of these rolls were spot

calibrated in the range 4 to 300 K using the boiling point of liquid helium,



liquid hydrogen, liquid nitrogen, the sublimation point of CO_., and the
triple point of water. These spot calibrations were compared with the
standard table (as established at this iaboratory by Sparks, et al l'Zl)
and a new table was established for these thermocouples. The differ-
ences between thermocouples from the same roll were negligible, i.e.
the emf of a thermocouple constructed from the opposite ends of the
Au- Fe wire used in this apparatus was less than | microvolt with one
junction in liquid helium and the other junction in ice. This represents
a change in the mean thermopower of less than | part in 5000. Also
one of the thermocouples in the apparatus was intercompared with a
germanium-resistance-thermometer from 4 to 30K. In this range no
difference could be measured between this thermocouple and those
fabricated for spot calibration. The thermopower of the standard
thermocouple is illustrated in figure 3. The emf differences between
the thermocouples used in this apparatus and the standard calibration
table are shown in figure 4.

The standard table for these thermocouples presented by Sparks,

2|

et al’ 'is based on the temperature scale IPTS-68. The IPTS-68 is
the present best estimate of the thermodynamic temperature scale.
The gradient along the specimen as determined from these thermo-
couples and used for calculatin; thermal conductivity is thus based on
the IPTS-68.
A Temperature Controls
High precision temperature controllers are used on the

floating sink, the shell surrounding the specimen,and the cryogenic
liquid surrounding the specimen chamber. The first two are elec-
tronic while the latter is mechanical. The heart of the electronic con-

trollers is a DC proportional and integral amplifier capable of 1 milli-

degree control when used in conjunction with a DC bridge, differential




thermocouuples, and conventional low level (microvolt) amplifiers.
This unit was developed by J. C. Jellison and N. C. Winchester of
the Cryogenics Division. The control circuit for the floating sink is
shown in figure 5. The sensing resistor is a copper wire resistor for
temperatures above about 30 K and a conventional carbon resistor for
temperatures below about 30 K. The dummy leads shown are leads
from the instrumentation rack to the cryostat paralleling those to the
sensing resistor. This is to compensate for temperature drift effects
on the sensing resistor leads. This circuit is capable of controlling
the floating sink temperatures, and therefore the upper end of the
specimen, to better than 1 millidegree.

The shell-to-specimen difference temperature is con-
trolled with a similar circuit but the sensing elements are the differ-
ential thermocouples between the shell and specimen., This circuit is
capable of maintaining the shell temperature within 1 millidegree of
the specimen temperature at the control point. At the present time
only the bottom (main; heater on the shell is automatically controlled;
the trim heaters are adjusted manually., However in the near future
all of these heaters will be placed on automatic control.

The mechanical pressure control (manostat) on the cryo-
genic liquid surrounding the cryostat is capable of controlling the vapor
pressure of the liquid to about 0. 1 mm of Hg. This manostat is simi-
lar to one described by Plumb[?’] For liquid nitrogen, hydrogen, and
helium at their normal boiling points this corresponds to temperature
control of 1, 0.3, 0.1 millidegree respectively. At the triple point of
nitrogen a pressure variation of 0.1 mm of Hg corresponds to a tem-
perature variation of 5 millidegrees. These numbers are somewhat

misleading, since undoubtedly there is some stratification in the liquid.




Thus as the liquid level drops due to boil-off, the temperature at a
fixed point in the dewar changes slightly even though the pressure at
the surface remains constant.

&5 3 Thermal Tempering of Wires

All of the leads attached to the specimen assembly
are brought horizontally to the shell, then up the shell and finally to
the reference temperature block., On the reference temperature block
the wires are all soldered to small copper wires which are taken out
of the vacuum system via stainless steel tubes and wax seals at room
temperature. It is important that the wires are brought into near ther-
mal equilibrium with the shell and reference block respectively. To
accomplish this, a calculated length of wire is cemented to an isother-
mal region on each of these components. The length calculation has
been performed (with a safety factor of about 5) to assure a temper-
ature difference of less than 1 millidegree. Bringing about such equi-
librium is here referred to as thermal tempering or just tempering.

It is obvious in the case of the reference temperature
block why these wires must be tempered to the reference block. Any
errors which are present due to poor thermal tempering will appear
directly in the apparent temperatures of the samgp'e. The differential
thermocouples used to control the sample to shell temperature differ-
ences must also be well tempered to an isothermal region on the shell.
To create isothermal regions on the shell, copper bands are attached
to the stainless steel shell at each measuring position. Again the
length of wire required to temper to within 1 millidegree has been used.
All leads from the specimen are thermally tempered to the shell at the
appropriate location to minimize the conduction heat loss along these

leads.



All of the copper leads going from the reference tem-
perature block to room temperature are thermally tempered to a cop-
per block in contact with the liquid nitrogen in the outer dewar. This
is to reduce heat flow to the reference block and also to reduce the
boil -off rate during liquid helium tests.

2.4 Measuring System

To determine the thermal conductivity, electrical resis-
tivity and thermopower as a function of temperature we need to deter-
mine the temperature of the reference block, the temperature distri-
bution of the specimen, the specimen heater power, the specimen re-
sistance, the Seebeck emf and the dimensions of the specimen. The
emfs are measured with a seven dial potentiometer-null detector sys-
tem. The temperature of the reference block is determined from the
resistance of a platinum resistance therniometer (No. 1037903) cali-
brated from 10 to 90K on the NBS-55 scale and above 90K on the IPTS
(1948) scale. Corrections have been applied to convert both of these
to the IPTS-68. The 1958 He® vapor pressure scale[4]is used to estab-
lish the reference block temperature for the liquid helium tests.

The specimen heater power is determined by measuring
the electrical current and voltage across the specimen heater. The
voltage leads are connected in such a way so as to include one-half of
the power generated in the current leads between the specimen and
shell. This is based on the assumption that about one-half of the heat
generated in these leads flows to the specimen heater while the other
half flows to the shell. The electrical resistance of the wire from
specimen to shell is about 0.2% of the total heater resistance. This
connecting wire was selected as a compromise to satisfy two conflicting

criteria: (a) small electrical resistance compared to the heater resis-



tance,(b) large thermal resistance to minimize heat conduction from
specimen to shell. A strip chart recorder is part of the measuring
system to facilitate observation of drift rates and other fluctuations

in any of the measured voltages.

3. SPECIMEN PREPARATION AND MEASUREMENT TECHNIQUES

The specimens are machined and ground to specified nominal di-
mensions, after which they are accurately measured in a temperature-
controlled measurement lab. Without further undue mechanical or
thermal abuse, each specimen is fitted with thermocouple holders and
heater. The specimen assembly is installed in the cryostat, the space
between the shell and specimen is packed with glass fiber, and tne
vacuum can is soldered into place. The cryostat is evacuated toc bet-
ter than 10™® mm of Hg and is subsequently cooled with the desired
cryogenic liquid. The specimen is brought into equilibrium with the
bath temperature (helium exchange gas at about 100 to 500 microns
pressure is generally introduced into the vacuum space to speed
the approach to equilibrium). With all power off to the speciinen
heater and shield heater,the zero emf of the thermocouples are read.
These zero corrections caused by various inhomogenities in the cir-
cuit are considered to be constant throughout the run with each dif-
ferent cryogenic bath,

Data on a given run are taken only after thermal steady state
has been established with a vacuum of better than 10™® mm of Hg.
Thermal steady state is considered established after systematic drift
of the indicated thermocouple temperatures are below the detectability

or controllability limit, approximately 1 millidegree per hour.
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Isothermal resistivity data are obtained at the same time that
the zero emfs are recorded. Also, to obtain further isothermal re-
sistivity data and information regarding the differences between the
eight measuring thermocouples, data are taken with the floating sink
above the temperature of the surrounding bath but with no heat input
to the specimen. The thermocouples thus indicate the temperature
difference from the specimen to the reference block. If the specimen
is at equilibrium with the floating sink then all eight thermoccuples
should produce the same emf. The scatter in these recorded emfs
is an indication of the validity of using a single calibration table for
all eight thermocouples. No significant deviations between thermo-

couples have been detected by this procedure,

4. CALCULATIONS AND DATA ANALYSIS

4.1 Thermal Conductivity

The defining equation for one-dimensional heat flow is

o = -K(T)A%){ (1)

where Q is the rate of heat flow thru the rod, A(T) is the thermal con-
ductivity of the rod at temperature T, A is the cross-sectional area
of the rod, and dT/dX is the temperature gradient along the rod at
temperature T.
Solving for A(T) we obtain
Q dx

AT) = - A dT (2)

Several methods can be used to obtain A values from the experimental

data.

i |



4.1.1 Difference method
Values of A(T) can be obtained from the measured
values of Xj, T, by equating the derivative dX/dT to the ratio of incre-
ments AX/AT (AX and AT are the distances and temperature differen-
ces between adjacent measuring positions on the specimen respec-

tively).

>

= (3)

s
>3

K(TI:)&:

This method results in 7 values of )\(7f’) for each run; —f is the mean

temperature between each adjacent pair of thermocouples.

4.1.2 Semi continuous method

One could also represent functionally the Xi, 'Ti
data by a least squares fit to obtain the parameters, A,, Az, ... A,
X=X(T, Ay, Az, ... Ap). (4)

Then upon differentiation with respect to T to obtain X - dX/dT, we

have 5
Q

A = -= X, 5

(T) A (5)

which yields a continuous set of values of A over the temperature range
of each run. Of course since each run is treated separately one would
end up with a set of discontinuous curves.
4.1.3 Continuous method
It would be more desirable to represent the meas-
ured data for all of the runs simultancously. This would have the ad-
vantage of resulting in a A(T) function continuous over the entire range

of measurement. It is also more desirable because the statistics of
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the least squarcs fit is then based upon 8n points (n is the number of
runs) instead of just 8 points. This can be accomplished in the follow-
ing manner. In the absence of experimental errors it is clear that one
should obtain identical values of A (from overlapping runs) at a given
temperature regardless of the value of Q, A, or X. For two over-
lapping runs these variables may be different at the given temperature.

Thus if we rewrite equation (2) in the form

dz, QX
A(T) = - — g = —
(T) aT where Z % (6)
we see that
Z = 2Z(T, Ay, Ag, ... Am) (7)

can differ from run to run only by a constant. Thus in general we have

Z = ZJ(T, Al’ Aa' DY Am) +bJ . (8)
The bj, called shift factors, serve only to account for the discontinu-

ous shifts which occur in the Z versus T values from run to run, and
do not appear directly in the function dZ/dT. Thus we can fit the 8n
data points to determine the m parameters, A;, Az, ... Apn,, and the
n-1 shift factors, bz, ba, ... b,. Note that the first shift factor is
arbitrarily set equal to zero. The number of degrees of freedom of
the fit in the absence of other conditions ic therefore 7n - m + 1. In
this experiment we have eight thermocouple measuring stations and
the temperature differences between adjacent positions is generally
smaller than about 10 K, sometimes less than 1 K. Because of these
small temperature differences the results from equations (3), (5), and

(6) should be quite similar,
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4.4 Iolectrical Resistivity

The measurement of current through and voltage across
the specimen determines the specimen resistance between measuring
stations | and 8. Most of the measurements are made with a thermal
gradient on the specimen and since the measurement is across the en-
tire specimen the total span of temperature may be quite large (over
I100K). Thus, resistivity data, as a function of temperature, must be
obtained from measured resistances of a non-isothermal specimen.

The defining equation for resistivity is

" r"“ o (T)dX
J A
X1

()

4.2.1 Mean temperature method

The approach generally taken is to assume that
0 (T) and dX/dT are slowly varying functions over the specimen, which

results in

p(T) ~ P L ,where’f —Tiill, (10)
X X2 -X)3 2

and p_x is the average resistivity over the specimen.

It is noted that, if large gradients exist in the
specimen, equation (10) may be significantly in error. In this experi-
ment we have measured temperatures at eight positions along the spec-

imen thus we can compensate partially for this error by computing T

from equation (11)

X2 7
T == X1 =
X2 AT (11)
f dx 2 : AX;
X1 =1
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where the summation extends over the seven measured segments and
fi is the mean temperature of the e segment. One can check the as-
sumptions after obtaining the p(f) curve. The o(f) values are inserted
into equation (9) and compared to the experimental data for each run.

This calculation is done numericaily with
7 ——
R & E -——L—J-C(TAAX. . (12)
i-3

The differences between values calculated from equation (12) and meas-
ured resistances will indicate whether systematic errors exist in the

data representation.
4.2.2 Approximate integral method
One can use the more correct but also more com-

plicated procedure as follows. From equation (9) we obtain

X2 7

RA :f D(T)dxzz;p('fi) AX (13)
1=

X,

where T; is the mean temperature of the th segment. Now we assume

a functional form for the resistivity versus temperature equation over

the temperature range of all the measurements.
p(T) = ay £1(T) + azfa (T) + ... apf},(T) (14)

where a,, as ... are parameters and f,, fz ... f,,, are specified
1 2 P 1 m P

functions of temperature. Substituting (14) into (13) we obtain

7 7

7
RA = a, f1 (Ti)Axi + ag E fa('_I'-i)AXi P s = * il E fm(fi)Axi .
1= 1=1 =2 (15)
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With the n experimental values of R (n2 m) we may perform a least

squares fit of (15) to determine the m parameters, a;, az ... ap,.
Some of the electrical resistivity measurements

are carried out under isothermal conditions. For these measurements

one obtains from (9) and (14)

p(T) _afa(T) 4 22 f2(T) ez o B amim(T)
Xa-X; Xa-X; Xa2-X) T X=Xy

RA = (16)

where T is measured. Thus (15) and (16) can be used simultaneously
to determine the parameters.
4.3 Thermopower
The problem of determining the thermopower of a speci-
men is similar to that for determining the electrical resistivity. The
quantity measured is the Seebeck voltage, Vg, over the temperature

interval T, to Ta. The thermopower, S, is defined by

Ta -
v, f SdT = S(Ta - Th ). (17)

T,

For small gradients the equation (difference method)
\%
s

S(T)n (18)

Ta-Th

yields a relatively accurate estimation of the thermopower at temper-
ature T. However as the gredients become larger, if S varies with T,
this approximaticn becomes progressively worse. An approach which
allows one to circumvent this difficulty is based on the following inte-

gral method. Assume a functional form for S,
dgi

S = by g'1 (T)+bag'g (T) +. . .+bmg'rn(T), where g,i:—d'—r

{19)
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Performing the integration in (17) we obtain

Vg = by [g1(T2)- g1 (Ty) [+balga(Ta)-ga(T) ]+ .. +bp (8, (To)-gm(Th)] .
(20)

Equation (20) is dependent upon the measured variables V_, Ty, Ty, and
the parameters by, ba,...,b,,. The m parameters can be determined
by least squares fitting of n> m sets of measurements.

4.4 Lorenz Ratio

The Lorenz ratio, L, is defined as the product of the
total thermal conductivity, A, and electrical resistivity, p, divided by
temperature, T.
pA

L= T (21)

Methods have been described to obtain A and p as a function of temper-
ature. These functions may be used directly to obtain the Lorenz ratio

as a function of temperature.

-] ERROR ANALYSIS

Terms such as accuracy, uncertainty, imprecision, etc are used
with various meanings by different authors. This is due, at least in
part, to the lack of rigorous definitions for some of these terms. To
avoid this confusion a brief discussion of such terms is included here.

(5]

This discussion is generally consistent with papers by Eisenhart,

[7]and Ku[.S]

Natrella{b]ASTM
In this paper the words accuracy and precision will refer to a
measurement process while the word uncertainty will refer to the re-
ported values obtained from such a process. The uncertainty of a
reported value is indicated by giving credible limits within which the

""true'' value is to be found. There is, of course, a certain amount

of risk that the true value will fall outside of these limits. The
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reporter's estimate of the magnitude of this risk is generally not made
clear. Some authors will give limits which allow essentially no risk
(100% confidence) others will allow large risk (say less than 50% con-
fidence), In this paper we will consider the risk to be relatively small
(about 957 confidence). The uncertainty of a reported value is deter-
mined by the accuracy (strictly inaccuracy) of a measurement process
and, in part, by the number of times the process is repeated.

The accuracy of a given measurement process is determined by
both the random and systematic (bias) errors inherent in the measure-
ment process. The magnitude of the total random error determines
the precision (strictiy, the imprecision) of the measurement. Pre-
cision thus concerns the closeness together or repeatability of meas-
urements; while accuracy concerns closeness to what was to be meas-
ured. This implies that one must also very carefully state that which
is to be measured. For example, in this work we measured the ther-
mal conductivity of specific specimens,not of specific materials. To
do the latter one would have to rneasure several specimens of each
material. The usual basis of the indices of precision is the standard
deviation of the statistical distribution of the measurement involved.
Unfortunately, a single comprehensive measure of accuracy (or in-
accuracy), analgous to the standard deviation as a measure of impre-
cision, does not exist. To characterize the accuracy of a measure-
ment process it is necessary to indicate (a) its systematic error or
bias and the degree of confidence of the writer (b) its precision using
a well defined index of precision. It is noted that the statistically
precise concept of a family of confidence intervals associated with a
definite confidence level is applicable only to data based on a meas-
urement process encompassing an adequate sampling of the total range

of circumstances. It follows that these concepts are not strictly
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applicable when systematic errors are a significant part of the inaccu.
racy of the measurement process. In many experiments, especially
this one, it is highly impractical to accomplish an adequate sampling
of the total range of circumstances and thus a subjective estimate of
the magnitude of systematic errors is necessary to completely de-
scribe the uncertainty of the results presented.

To characterize the uncr:rtainty of a reported value, we will use
the same approach as in characterizing the accuracy of a measuremen
process: (1) indicate the probable systematic error in the final result
at an estimated 95% confidence,(2) indicate the imprecision of the final
result by giving the standard deviation of the mean (commonly called
the standard error). Note that the standard error is dependent upon
the number of measurements, while the standard deviation of the
measurement process is not.

The total uncertainty of a reported value will be indicated by a
single number obtained from the bias estimator (95% confidence) and
the equivalent 957 confidence level confidence interval based on the
imprecision of the measurements. The root-mean-square value of
these independent quantities is taken as the uncertainty of the reported
data.

It is to be noted that the data and final results reported in this
report are properties of specific specimens. These data do not
represent the properties of the indicated materials since no atternpt
has been made to ascertain the variability between specimens of the
same rnaterial. It thus follows that the uncertainties presented includ.
only our measurement uncertainty not the material variability. Ma-
terial variability may well be as much as 5 to 10%. This may be
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